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In a recent study of axonal transport of

neurofilament protein particles [1], the possibility

was raised that such particles might represent

‘…complexes of newly (translated) protein…’. 

This proposition is noteworthy because it reflects a

growing awareness that there is a protein-

synthesizing machinery within axons [2–5] – a

notion not generally shared, and one that is still

excluded from textbooks [6,7]. We believe that this

shifting frame of reference, from the cell body to the

axon as an immediate source of axonal proteins, will

ultimately have a strong impact on studies of the

biology and pathobiology of the neuron. To stimulate

a wider recognition of this perspective, we present a

concise description of recent developments in the

field, viewed in their historical context.

Objections to an exclusive somatic source of axonal and

presynaptic proteins

The main objection to the soma being an exclusive

source of axoplasmic proteins [8] arose from the fact

that cytoskeletal and cytosolic proteins synthesized

in the cell body reach their destinations via slow

axoplasmic transport, at rates of a few millimeters

per day [9,10]. As axons can extend distances of ≥1 m,

years would be required to transport proteins to

distal axonal segments and presynaptic terminals.

Given that the typical half-life of brain cytoskeletal

proteins is in the range of a few days to a few 

weeks [11–13], the requirements for metabolic

stability on such a scale clearly would be unrealistic.

Indeed, an earlier ad hoc hypothesis of sustained

metabolic stability during transit [14] was

invalidated by evidence for the metabolic decay of

slowly transported proteins [15]. Moreover, the local

re-utilization of released amino acid residues [13]

supported the premise that there is local protein

turnover. As considered elsewhere in detail

[2–5,8,16], an exclusively somatic source of axonal

proteins cannot explain the maintenance of, and local

variations in, axoplasmic mass, nor the plasticity

exhibited by axonal branches and terminal fields.

Thus, as suggested by previous work [8], there must

be an additional, local source of protein.

Local protein synthesis in axons and nerve endings

In early studies conducted mainly in large model

axons, such as the goldfish Mauthner axon and the

squid giant axon [2–5], axoplasm was shown to

incorporate amino acids into proteins by a mechanism

sensitive to inhibitors of protein synthesis. This

mechanism was also present in nerve terminals, as

indicated by studies of squid optic lobe synaptosomes [5].

Comparable observations have been made in several

types of mature axons, including those from goldfish

spinal cord, mammalian spinal nerve roots and

peripheral nerves, as well as in cultured immature

axons [5].

Axonal and presynaptic ribosomes
Despite the above evidence, axons are considered

incapable of synthesizing proteins [6,7] – mainly

because ribosomes have not generally been observed

in axons by conventional electron microscopy (EM),

except in the initial segment [17,18]. Nonetheless, the

identification of axoplasmic rRNA in the Mauthner

axon [19,20] and squid giant axon [21] provided

indirect evidence for axonal ribosomes. This was

confirmed by the isolation of active polysomes bearing

nascent peptide chains from the axoplasm of squid

giant axons [22], and by the demonstration of

polysomes in proximal [23] and distal [22,24]

axoplasmic regions using electron spectroscopic

imaging (ESI), a method that removes the ambiguity

inherent in conventional EM. ESI has provided direct

evidence of phosphorus signals emitted by ribosomes

in several additional studies [24–27]. The presence of

ribosomes in the squid giant axon has also been

confirmed using independent analytical methods

[24,28]. In addition, there is now evidence that

ribosomes are included in novel structural 

entities systematically distributed along vertebrate

axons [25,27]. The presence of ribosomes in growing

axons was reported in early EM studies [29,30] as

well as in more recent investigations [31,32].

Restricted distributions of ribosomes were initially

discovered in axoplasm isolated from goldfish

myelinated fibers [25], and later shown in axoplasm

isolated from spinal nerve roots of rabbit and rat [27].
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Because isolated axoplasm is a visco-elastic solid that

retains its shape, it is referred to as an ‘axoplasmic

wholemount’. Periaxoplasmic ribosomal domains

appear plaque-like at the surface of the wholemount

(‘periaxoplasmic plaques’; Fig. 1), and their structural

correlates appear in ESI as a dark matrix. The

thinness and intermittent distribution of

periaxoplasmic plaques make their detection by

random search in conventional EM difficult, but not

impossible [18]. Limited cortical ribosome

distributions have been described after serial

sectioning of sensory fibers [17]. Recently, confocal

microscopy of myelinated fibers in rat nerve rootlets

has revealed punctate cortical immunofluorescence of

the translational co-factor eIF5, ribosomal L4 protein

and rRNA [33].

It now appears that there is specific targeting of

RNA to periaxoplasmic domains. For example, full-

length or truncated 5′ sequences of neuronal BC1

RNA (an RNA polymerase III transcript) localize to

cortical domains after microinjection into the

Mauthner cell body, but a truncated 3′ sequence of

BC1 RNA, and other non-cytoplasmic or nonsense

RNAs of similar lengths, are not transported [34].

Thus, targeting depends on a specific 5′ sequence.

RNA localization in plaque domains is mediated by a

two-step transport process, initially requiring

microtubules for rapid long-range axial transport,

followed by local actin-dependent radial

translocation.

Smaller ribosome-containing plaque-like

formations are also present in the squid giant axon,

where they are randomly distributed within

axoplasm (at least in young squid), frequently in close

proximity to mitochondria [22,24]. Vesicles and

cisterns with smooth membranes are present near

squid axoplasmic polysomes; membrane-bound

ribosomes have not been observed [22–24], although

there are examples of ribosomes being attached to

axonal ER [18,27]. The lack of a morphologically

detectable rough ER within axons does not mean that

integral membrane proteins are not synthesized

axonally. Indeed, when cultured motor axons (acutely

separated from their cell bodies) of the snail Lymnaea

were microinjected with a heterologous mRNA

encoding a conopressin receptor [35], the newly

synthesized receptor was present in the membrane

and was functionally active (Fig. 2). These axonal

capacities raise several fundamental questions

worthy of future investigation.

Polysomes have also been isolated from

synaptosomes derived from squid photoreceptor

terminals [36] and found to be closely associated with

mitochondria [26,37]. This spatial proximity is

especially interesting in view of recent data

demonstrating the local presynaptic synthesis of several

mitochondrial proteins whose genes are in the nucleus

(i.e. nuclear-encoded mitochondrial proteins) [38].
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Fig. 1. Periaxoplasmic ribosomal plaques in the cortical zone of axoplasmic wholemounts isolated
from rabbit ventral root myelinated fibers. (a) Low-power differential interference contrast (upper
panel) and corresponding phase-contrast (lower panel) micrographs show a distribution of structural
correlates, which appear as excrescences along the wholemount surface. The correspondence
between structural plaques and ribosomal domains is shown by phase images of structural plaque
correlates (b–d, upper panels) and by immunofluorescence of rRNAspecifically detected by
monoclonal antibody (mAb) Y-10B (b–d, lower panels). At higher magnification, plaque ribosomal
domains immunostained with mAb Y-10B reveal a punctate character, probably corresponding to
polysomes [27]. (e,f) The specificity of mAb Y-10B immunoreactivity with rRNA. Two sets of
wholemounts immunostained with mAb Y-10B [e,f (upper panels); emission maximum: 546 nm]
reveal ribosomal plaque domains. RNA staining of the same two sets of wholemounts with YOYO-1, 
a high-affinity nucleic-binding dye [e,f (lower panels); emission maximum: 509 nm] show that
ribosomal plaque domains are unaffected after incubation with buffer alone (e, lower panel), but are
eliminated after incubation with RNase (f, lower panel). Scale bars, 10 µm. Modified, with permission,
from Ref. [27].
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Fig. 2. Expression and insertion into the plasma membrane of a
functionally active heterologous conopressin receptor in isolated snail
axons. Isolated axons of Lymnaea neurons were injected in vitro with
distilled water or mRNA for a G-protein-coupled conopressin receptor;
a few hours later they were assessed for a functional response.
(a) Injection into an isolated axon. Scale bar, 10 µm. (b–d) Electrical
recordings of isolated axons before and after application of exogenous
conopressin (arrows). (b) Conopressin elicits no response in a control
axon injected with distilled water (the downward deflection at the start
of the application represents a pressure artifact). Scale bars, 2 s (x-axis)
and 10 mV (y-axis). By contrast, in an isolated axon injected with the
mRNA (c), conopressin elicits a large and prolonged depolarizing
response generating a burst of action potentials. (d) Intra-axonal
injection of the G-protein inhibitor GDP-α-S suppresses the response to
conopressin. Scale bars in (c,d), 5 s (x-axis) and 10 mV (y-axis).
Modified, with permission, from Ref. [35].
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Axonal and presynaptic mRNAs and translation
products
Earlier demonstrations of the presence of a

heterogeneous family of mRNAs in the squid giant

axon [39,40], and the complexity of these mRNA

sequences [41], led to the identification of several

mRNAs [42]. These included those encoding β-actin

and β-tubulin [43], neurofilament proteins [22],

enolase [44], kinesin [45] and a novel protein [46]. The

relative abundance of axoplasmic mRNAs was

markedly different from that in the corresponding cell

bodies, thus indicating the occurrence of selective

sorting [42]. Squid axoplasm was also shown to

contain all species of tRNA [47] and the complete set

of protein factors required for protein synthesis [48].

Squid synaptosomal mRNAs derived from

photoreceptor terminals code for several nuclear-

encoded mitochondrial-associated proteins [38],

including cytochrome oxidase subunit 17,

propionyl-CoA carboxylase, dihydrolipoamide

dehydrogenase, coenzyme Q subunit 7 and heat shock

protein 70 (HSP 70; a molecular chaperon). Some of

these proteins are synthesized in nerve terminals, as

shown by the presence of the coding mRNAs on

purified presynaptic polysomes [38] (Fig. 3).

Mitochondria-associated proteins account for a large

fraction of the proteins synthesized by squid

synaptosomes [38]. More recently, a proteomic

investigation of metabolically labeled presynaptic

synaptosomes [49] confirmed the de novo synthesis of

~80 protein species, including nuclear-encoded

mitochondrial proteins, cytoskeletal proteins, various

enzymes and HSP 70.

The data from metabolically labeled presynaptic

synaptosomes have important implications. They

indicate that mitochondrial maintenance could be

supported by local mechanisms, rather than being

exclusively dependent on somatic sources. In

addition, they focus attention on the mutual

relationship that exists between presynaptic

translation processes and local energy supply. In this

context, the inhibition of squid synaptosomal protein

synthesis by high cytosolic Ca2+ concentrations [50]

suggests that, in addition to other mechanisms, a

sustained increase in presynaptic Ca2+ could trigger a

deleterious cascade, by impairing mitochondrial

energy output and eventually leading to degeneration

of the nerve terminal.

Consistent with the situation described for the

giant axon [42], notably with regard to the different

sets of neurofilament proteins synthesized in squid

axoplasm (M. Crispino et al., unpublished) and

synaptosomes [51], analyses of RNA transcripts or

translation products in vertebrate axons have

highlighted the selectivity of the sorting process.

Although mRNAs encoding the neurofilament

proteins NF-M and NF-L have been identified in

mature axons, such as the Mauthner axon [52] and

neurohypophyseal axons [53], most studies on

vertebrate preparations have focused on immature

axons of cultured explants or dissociated neurons

[31,32,54–58]. It is now clear that growing neurites

and growth cones contain β-actin mRNA, but

α-tubulin and γ-actin mRNAs are excluded [31,32,56].

Polysomes isolated from sensory axons regenerating

in vitro are also associated with β-actin and NF-L

mRNAs [32]. Indications that β-actin and β-tubulin,

but not α-tubulin, are synthesized locally [55] have

been recently confirmed by immunoprecipitation of

newly synthesized translation products [58].

Nonetheless, the synthesis of axoplasmic α-tubulin

and β-tubulin by goldfish Mauthner axons and rat

spinal root fibers [59] suggests that findings
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Fig. 3. Nuclear-encoded mitochondrial proteins are translated in squid
presynaptic synaptosomes. (a) RT–PCR amplicons of nuclear-encoded
mitochondrial proteins (COX 17 and CoQ 7) are present in squid optic
lobe microsomes (Mic) and synaptosomes (Syn), but amplicons of the
voltage-sensitive Na+ channel (Na+ chan) are only present in
microsomes. The latter observation indicates that synaptosomes are
not contaminated by microsomes. (b) Amplicons of CoQ 7 are
associated with synaptosomal polysomes (P) but are absent from the
monomer fraction (M). This indicates that CoQ 7 mRNA is being
translated. Purified synaptosomal polysomes were fractionated by
sedimentation on a sucrose density gradient, and their optical
absorption profile (A254 nm) was recorded in arbitrary units using a
gradient fractionator (c). The absence of amplicons generated from
gene-specific primers for the voltage-sensitive Na+ channels from
either P or M, but their presence in microsomes, confirms the purity of
synaptosomal polysomes. Abbreviation: MW, molecular weight
markers. Modified, with permission, from Ref. [37].
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concerning immature axons in vitro do not

necessarily apply to mature intact axons. In

immature axons, mRNAs appear as punctate

structures closely associated with [31,32], and

actively transported along [56], microtubules. 

Indeed, neurotrophin-3 induces a short-latency

cAMP-dependent localization of β-actin mRNA in

growth cones that is mediated by microtubules [57].

Less conclusive data are available for mammalian

presynaptic mRNAs [5], but recently mRNA encoding

the presynaptic GAT-1 protein was found to be

significantly enriched in rat synaptosomes [60].

Interestingly, as demonstrated in cultured Aplysia

sensory neurons [61], target interaction and synapse

formation result in accumulation of mRNAs destined

for translocation, and positively affect the stability of

translocated mRNAs.

Local translation processes in axonal growth, axonal
regeneration and synaptic plasticity
Translational machinery is present in growing axons

[54,55], where it plays crucial roles in axon guidance,

regeneration and synaptic plasticity. For example,

isolated retinal growth cones immediately lose their

ability to turn in a chemotropic gradient of netrin-1 or

Sema3A when translation is inhibited. Inhibition of

protein synthesis does not affect axon elongation [62],

but it promotes growth-cone retraction if transport

between cell bodies and axons is interrupted [33].

Moreover, netrin-1 and Sema3A activate initiation

factors and stimulate a marked rise in protein

synthesis within minutes [62]. Thus, the directional

growth potential of immature axons appears to

depend on local synthesis.

A more marked response occurs in the adult sciatic

nerve, in which local inhibition of protein synthesis

reduces the regeneration rate by as much as 60% [63].

The site of inhibition is clearly local because the

growth rate is unaffected when the region proximal to

the lesion is treated with cycloheximide. In addition,

nerve transection induces a delayed, but marked,

elevation in protein synthesis that is restricted to the

extremity of regenerating axons [64] and is under

local regulation [5,65].

Importantly, in primary cultures of Aplysia

neurons, axons deprived of their cell bodies can grow

and develop synaptic connections for up to three days,

an effect reversibly blocked by anisomycin [66]. In

addition, the formation of long-term facilitation is

crucially dependent on presynaptic protein synthesis

[67,68]. A comparable dependence has been reported

for the induction of long-term facilitation in the

crayfish [69]. Clearly, these observations indicate 

that synaptic plasticity is supported by local

translation processes.

Conclusions

The presence of endogenous protein-synthesizing

machinery in axons and nerve terminals creates an

entirely new perspective in studies of the biology and

pathobiology of neurons. As these and other data [5]

suggest, the growth, differentiation, maintenance,

plasticity and pathobiology of axons and nerve

endings must now also be viewed in the context of

local mechanisms that endow axons and nerve

terminals with the capacity to respond in a semi-

autonomous manner to local challenges [70]. This

new frame of reference opens the door to a wide range

of novel experimental approaches in the quest for a

better understanding of neuronal cell biology.

Perhaps one of the more intriguing questions

concerning axonal and presynaptic protein synthesis

centers on mechanisms of local regulation. Such

mechanisms might not be limited to the cognate cell

body as an exclusive source of RNAs, but could also

include the glial cell as a potential source, as

indicated by evidence of local transcription of axonal

RNAs [5,19]. The possibility that periaxonal glial cells

could transfer RNAs, including mRNA, to the

subjacent axon is clearly worthy of future

investigation, as it might shed light on local

modulatory mechanisms.
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